Name

Class

🞓 maths teacher hub

www.MathsTeacherHub.com

Surds (9 – 1) Topic booklet

HIGHER

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

•Use **black** ink or ball-point pen.

•Fill in the boxes at the top of this page with your name, centre number and candidate number.

- •Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.

•Diagrams are NOT accurately drawn, unless otherwise indicated.

•You must show all your working out.

•If the question is a **1F** question you are not allowed to use a calculator.

•If the question is a 2F or a 3F question, you may use a calculator to help you answer.

Information

•The marks for each question are shown in brackets

- use this as a guide as to how much time to spend on each question.

Advice

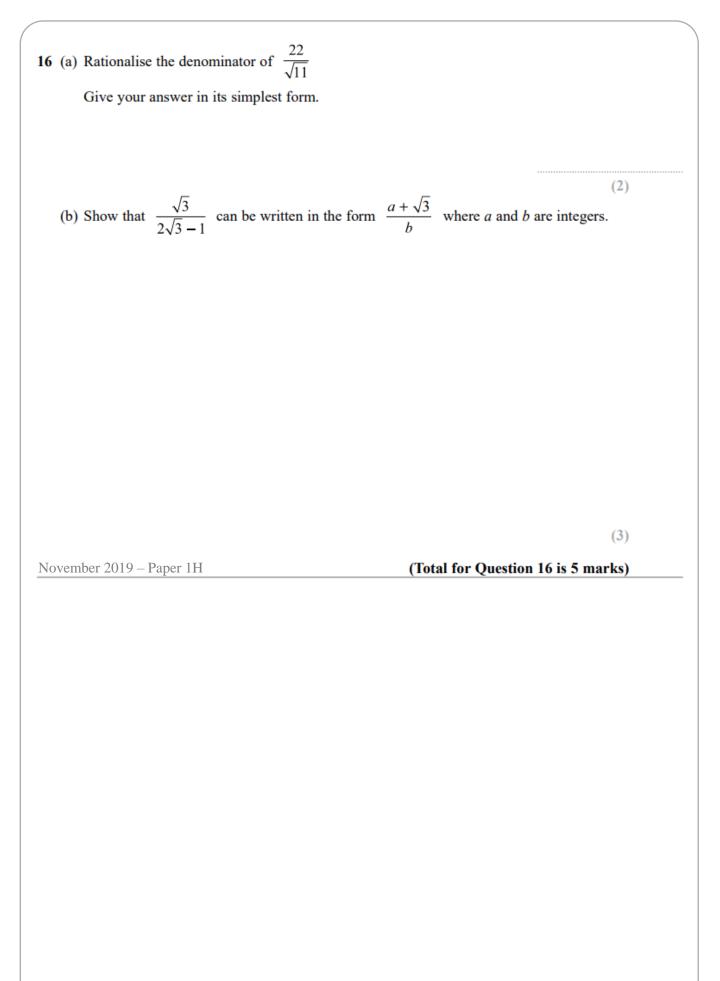
- •Read each question carefully before you start to answer it.
- •Keep an eye on the time.
- •Try to answer every question.
- •Check your answers if you have time at the end.

Answer ALL questions Write your answers in the space provided. You must write down all the stages in your working.

13 $\sqrt{5}(\sqrt{8} + \sqrt{18})$ can be written in the form $a\sqrt{10}$ where a is an integer.

Find the value of a.

June 2018 – Paper 1H


(Total for Question 13 is 3 marks)

a =

14 Show that
$$\frac{(4-\sqrt{3})(4+\sqrt{3})}{\sqrt{13}}$$
 simplifies to $\sqrt{13}$

Specimen 2 – Paper 1H

(Total for Question 14 is 2 marks)

18 (a) Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where *a* is an integer.

(b) Express
$$\left(\frac{1}{\sqrt{3}}\right)^7$$
 in the form $\frac{\sqrt{b}}{c}$ where b and c are integers.

June 2019 – Paper 1H

(Total for Question 18 is 5 marks)

5

(3)

(2)

18 Simplify fully $(\sqrt{a} + \sqrt{4b})(\sqrt{a} - 2\sqrt{b})$

Specimen 2 – Paper 2H

(Total for Question 18 is 3 marks)

19 Solve $\frac{1}{2x-1} + \frac{3}{x-1} = 1$

Give your answer in the form $\frac{p \pm \sqrt{q}}{2}$ where p and q are integers.

June 2022 – Paper 1H

(Total for Question 19 is 4 marks)

7

19 Show that $\frac{8 + \sqrt{12}}{5 + \sqrt{3}}$ can be written in the form $\frac{a + \sqrt{3}}{b}$, where *a* and *b* are integers.

November 2021 – Paper 1H

(Total for Question 19 is 4 marks)

19 Solve
$$\frac{1}{x} - \frac{1}{x+1} = 4$$

Give your answer in the form $a \pm b\sqrt{2}$ where a and b are fractions.

November 2022 – Paper 1H

(Total for Question 19 is 5 marks)

9

19 Simplify fully $\frac{(6 - \sqrt{5})(6 + \sqrt{5})}{\sqrt{31}}$ You must show your working.

Specimen 1 – Paper 1H

(Total for Question 19 is 3 marks)

20 Show that $\frac{\sqrt{180} - 2\sqrt{5}}{5\sqrt{5} - 5}$ can be written in the form $a + \frac{\sqrt{5}}{b}$ where a and b are integers. (Total for Question 20 is 4 marks) November 2020 – Paper 1H

20 Show that

$$\frac{(\sqrt{18} + \sqrt{2})^2}{\sqrt{8} - 2}$$
 can be written in the form $a(b + \sqrt{2})$ where a and b are integers.

November 2018 – Paper 1H

(Total for Question 20 is 3 marks)

20 Martin did this question.

Rationalise the denominator of $\frac{14}{2+\sqrt{3}}$

Here is how he answered the question.

$$\frac{14}{2+\sqrt{3}} = \frac{14 \times (2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$$
$$= \frac{28-14\sqrt{3}}{4+2\sqrt{3}-2\sqrt{3}+3}$$
$$= \frac{28-14\sqrt{3}}{7}$$
$$= 4-2\sqrt{3}$$

Martin's answer is wrong.

(a) Find Martin's mistake.

(1)

Sian did this question.

Rationalise the denominator of $\frac{5}{\sqrt{12}}$

Here is how she answered the question.

$$\frac{5}{\sqrt{12}} = \frac{5\sqrt{12}}{\sqrt{12} \times \sqrt{12}}$$
$$= \frac{5 \times 3\sqrt{2}}{12}$$
$$= \frac{5\sqrt{2}}{4}$$

Sian's answer is wrong.

(b) Find Sian's mistake.

(1)

June 2018 - Paper 2H

(Total for Question 20 is 2 marks)

13

21 Show that $\frac{6-\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a + b\sqrt{2}$ where a and b are integers.

November 2017 – Paper 1H

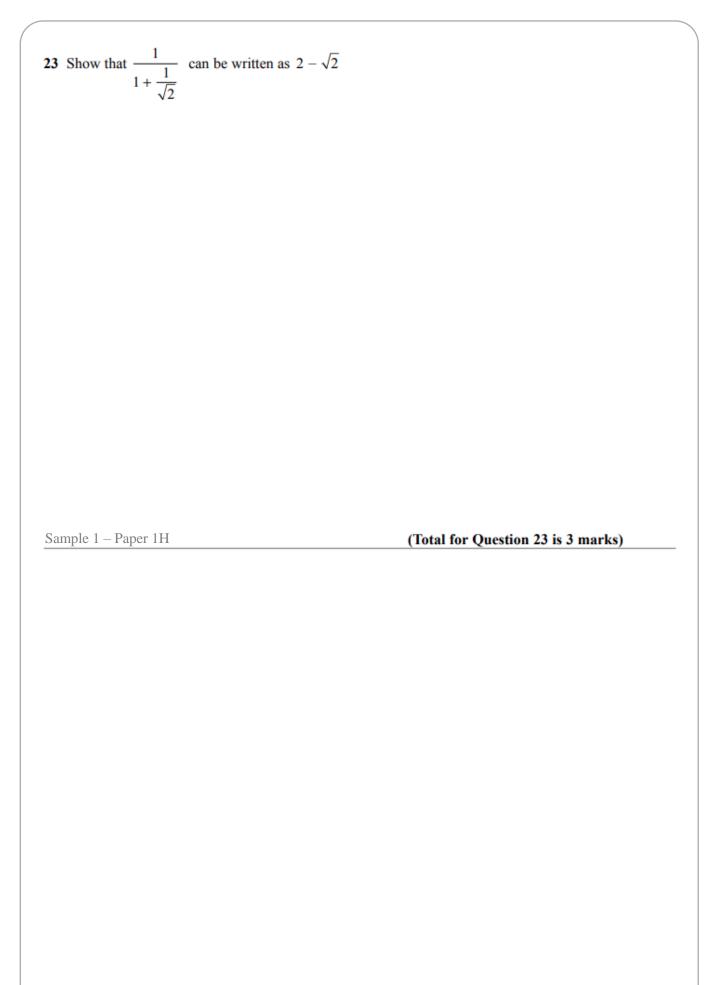
(Total for Question 21 is 3 marks)

23 Here are the first five terms of a geometric sequence.

 $\sqrt{5}$ 10 20 $\sqrt{5}$ 200 400 $\sqrt{5}$

(a) Work out the next term of the sequence.

The 4th term of a different geometric sequence is $\frac{5\sqrt{2}}{4}$ The 6th term of this sequence is $\frac{5\sqrt{2}}{8}$


Given that the terms of this sequence are all positive,

(b) work out the first term of this sequence. You must show all your working.

(3)

(2)

November 2022 – Paper 1H

